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EFFECTIVE METHOD OF CALCULATING THE WAVE DRAG
OF SOLIDS OF REVOLUTION IN THE TRANSONIC RANGE*

M. A. Naida and A. S. Fonarev’ UDC 533.6.011

The determination of integral aerohydrodynamic characteristics is one of the principal objectives in the solution of
aerodynamic problems. Here, we describe an effective new algorithm for calculating the wave drag of solids of revolution in
a transonic flow of an ideal gas. The calculations are performed within the framework of the theory of small perturbations.

In the numerical study of problems concerning flow about bodies, the necessary aerodynamic coefficients are usually
calculated by integrating the distribution of pressure over the surface of the body. However, it should be noted that the
accuracy of this approach may be affected by errors made in the numerical calculation — particularly in the nose and tail
regions. Calculations have shown that these errors are negligible in the determination of the lift and moment coefficients and
that the traditional method is acceptable for both steady and unsteady problems.

The situation is different in regard to determination of the wave drag. It is known [1, 2] that integration errors —
connected both with errors in the numerical analysis and with violations of the postulates of the transonic theory of small
perturbations at individual points on the body — may produce errors in the final result obtained by the traditional approach.
These errors may even lead to negative values for the drag coefficient. Thus, here we use another method to determine the
wave drag of bodies — a method that is less sensitive to integration errors. The authors of [2] were the first to propose
replacing integration of pressure over the surface of the body by another procedure that does not involve integration at
locations where the postulates of the transonic theory may be violated. The alternative method has now been used extensively
in studies devoted to finding ways to determine steady and unsteady wave drag in transonic flows.

For example, it was proposed in [1, 2] that wave drag in a steady flow past thin airfoils be found by integrating
along shock waves enveloping supersonic regions. This method is less sensitive to numerical integration errors connected
with specific features of perturbation theory. Also, as was noted in [1], in the given regimes viscosity affects the position and
intensity of the shock wave only in its lower region. The upper part, formed by superimposed compression waves, is
independent of the interaction of the wave and the boundary layer. Local errors due to deviations from the theory of small
perturbations (such as those occurring in the vicinity of the blunt nose of the body) also have little affect on the position and
intensity of shocks enclosing supersonic regions.

A similar approach to determining steady-state wave drag was used in [3], where it was assumed that the contour
integral of the longitudinal component of momentum along the shocks is equal to the contour integral over the surface of the
body.

The author of [4] and [5] generalized the method to the case of unsteady transonic flow and obtained the time
dependence of aerodynamic characteristics of wing profiles for different transients — such as the interactions of the profile
with a wind shear, a moving shock wave, etc.

The values of drag calculated in the above-cited works for different airfoils agree well with the experimental data,
which shows the effectiveness and reliability of the method. It is interesting to attempt to extend the method to the case of
flow about axisymmetric bodies. There are certain features specific to this problem which have not been examined in the
literature. Here, we obtain a drag formula for solids of revolution in steady transonic flow, develop a numericat algorithm to
calculate transonic flow about solids of revolution (the axisymmetric analog of the method of variable directions, with the
Engquist—Osher monotone algorithm), and compare numerical calculations of the wave drag of certain solids of revolution
with empirical data. Using the transonic rule of equivalence, numerical results are obtained for the resistance of a complex
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Fig. 1

three-dimensional aircraft configuration of elongated form. The results are obtained for the transonic velocity range and are
compared with experimental data.

1. Formulation of the Problem. The problem of transonic flow past a prolate solid of revolution can be examined
within the framework of the nonlinear transonic theory of small perturbations. Here, we obtain steady-state solutions by
proceeding on the basis of the equation for unsteady conditions. We write this equation as follows in dimensionless form

1
Aoz = By + T (T(Pr)r

(1.1)
(A=2M2%, B=1-M% — (7 +1)M% ©,).

Here, ¢ is the potential of perturbed velocity, referred to the velocity of the incoming flow U, and the length of the body in
the flow L; the independent state variables (the longitudinal coordinate x and the transverse coordinate r) are referred to L;
time t is referred to L/U,; v is the adiabatic exponent; M, is the Mach number of the undisturbed flow.

As the boundary conditions at infinity for Eq. (1.1), we use the so-called nonreflecting conditions proposed in [6] for
plane transonic flow. The derivation of these relations is based on analysis of the characteristic equation obtained from the
equations of the transonic theory of small perturbations. Since the characteristic equation for the axisymmetric case is
identical in form to the analogous equation for the plane case, we can use the results in [6] to obtain asymptotic relations for
large distances in the case of axial symmetry:

pr—Bp:/[A=0, T— ~00; @r=0, z— oo; 97r+\/§§91=0’ T 0C.

The boundary condition for the body requires special consideration. Since the initial equation contains a singularity in the
cylindrical coordinate system at r = 0, it is incorrect to take the boundary condition on the axis of symmetry. Instead, it
should be assigned on a certain cylindrical surface of small radius that separates the entire region of the solution into external
and internal parts. Then the resulting solutions are joined to obtain the complete solution.

It is known [7] that flow near an axisymmetric body is described by the following equation in the internal region

(ree)r = 0.
Having integrated this equation once, we obtain
re. = f(z), (1.2)

where f(x) is an arbitrary function. We can find this function by using the condition of nonflow on the surface of the body
o, = R'(x) (R(x) is the form of the solid of revolution). Thus,

f(z) = RR/(z).
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Fig. 4

Finally, we write the boundary condition for the external region in the form

S'(z)
2r

limre, =
r—0

(S(x) is the cross-sectional area of the body in the flow).

In the numerical solution of the problem, the given relation is assigned for the surface of a cylinder of sufficiently
small radius r«. The specific value of r determines the boundary where the solutions are joined and should be chosen on the
basis of the condition that its further decrease will have almost no effect on the pressure distribution on the body obtained by
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solving the boundary-value problem. A procedure for choosing the optimum value in relation to the Mach number of the
incoming flow and the thickness of the body was described in [8, 9].

2. Method of Calculating Wave Drag. Certain transformations must be performed before the integral theorem of
momenta can be used to calculate the wave drag of a solid of revolution by integrating over a shock wave. The
transformations are necessary because the expression for pressure on the body in the axisymmetric case differs from the
analogous expression for the plane case within the context of the theory of small perturbations. In addition, as in the plane
case, the original integration method is unsuitable because of certain features in the axial structure of the flow.

With the assumption that the perturbations are small, we write the expression for the pressure coefficient in the form

_ 2
cp = —2u —v°.

The transverse component of velocity on the body is known from the boundary conditions. To determine the longitudinal
component, we once again integrate Eq. (1.2):

S’I
p= ﬁlnr + g(z).

Here, g(x) is a function determined by joining the result with the solution of the external problem. For the longitudinal
component of velocity we obtain

1

u-(p,;:————lnr+gz 2.1)

Since the boundary-value problem has been solved, i.e. since the field of perturbed velocity is known, then we also know the
distribution of the longitudinal component u« on the surface of the imaginary cylinder at r = r«. Combining the internal and
external solutions at r = r., we find the value of g' in (2.1) and, thus, the sought distribution of the longitudinal component
of velocity on the surface of the body:

"
R
u(z,R) = S” ln — + L.

Now we can determine the wave-drag coefficient of the body as the integral of pressure on the body:

0,5
"
;= — '/‘27rRR'z (211,-{-—5—I£ n£+(R;)2)d
. T T,

We take condition (1.2) into account and write this expression in the form of the sum of two integrals:

0,5 \
"

c1=-—47r/r.u,v.ldz—21r/ (S" lnR+(R))RR;d1, @.2)

-0,5 ~0,5

The second term can be integrated:
s 2 z=0,5
2«/(“1nR+(R P rR,de= EL 1 2 @3
-05 T Ta z=-0,5

Since only thin and (as a rule) closed bodies are examined within the framework of the transonic theory of small
perturbations, the terms of (2.3) vanish. Specifically, this occurs because the limit R2InR — 0 as R - 0 in the nose and tail
portions of the body. In the case of a body with a nontrivial radius in the bottom part, the complement of resistance — the
term with x = 0.5 — may not be zero. In this case, it can be calculated in accordance with (2.3). Thus, the first term
remains unknown in the expression for drag (2.2) and must be found.
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As already noted, certain errors may produce incorrect results when the wave drag of a body is calculated by
integrating pressure over the body. Negative values may even be obtained. We will attempt to avoid such an outcome by
using an approach described in [2] for the plane case. We will examine a system consisting of the stationary analog of Eq.
(1.1) and an equation expressing the condition for the absence of vorticity in the flow:

r(l- Mgo)uz' -r(v+ I)Mgo u“ﬁ + (rv), =0,
U, — v = 0.

Muitiplying the first equation of the system by u and the second by rv and adding the results, we obtain a relation having a
divergent form:

(r(1—2M?’° u2-—7;1M§°u3-—§))x+(ruv)r=0.

Taking the double integral of this expression over the entire theoretical flow region and using Green’s formula to reduce it to
a curvilinear integral over a closed contour (Fig. 1), we find that

1-M2 2 7+1,.
fr( R M,

2.4)

2
3 _ v _
u ——2—)dr—ruvdx—0.

At M, < 1, the asymptote of the long-range flow field is such [1] that the integrals over the external boundaries approach
zero as the boundaries of the theoretical region approach infinity. Thus, we can write (2.4) in the form

0,5
2 2
/r[l_Moo u2_7+1Mgou3__v_] dr—/r[u‘l}]d.’t— /u:mhdl‘:oy
2 3 2 3 0,5
s =Y,

where the index s denotes integration along a shock wave or several shock waves. The brackets denote that the enclosed
quantity undergoes a discontinuity in the transition through the shock wave. The resulting expression means that, to within
the multiplier 4=, the first term in Eq. (2.2) can be expressed in terms of integrals over a shock wave. Here, the integrands
differ from the corresponding expressions for the plane case [1] only in the presence of the independent coordinate r, which
is continuous in the transition through the shock. Omitting the intermediate calculations (which are analogous to the
calculations performed in [1]), we present the final result in the form
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1
/ U v Todz = ~MZ % r [u]? dr,

3

so that

C = 47r71-|;1 Mgo‘/r[u]3 dr. 23

In contrast to the first integral in Eq. (2.2) — the value of which represents a small difference between two similar quantities
and thus contains unacceptably large errors (as already noted, the result may even turn out to be negative), integral (2.5) is
always positive, since the integrand is positive due to the physical nature of the problem.

3. Numerical Method and Results of Calculation. The boundary-value problem formulated for Eq. (1.1) was solved
numerically by the steady-state method. To obtain the solution, we devised an axisymmetric variant of the implicit method of
variable directions and used the Engquist—Osher monotone algorithm. This approach was used in [10-12] to calculate plane
unsteady transonic flows. Using the method of variable directions allows us to break the problem down into two stages. In
the first stage, we pass over all horizontal lines of the computing grid in the x-direction and calculate an intermediate value
of potential. We then use this value in the second stage (passing over all vertical lines in the r-direction) to obtain values of
potential for the next time layer. It should be noted that this is not an iterative method. The value of potential for the next
time layer is calculated by direct use of the value of potential for the preceding layer, expressed in terms of the intermediate
potential. The calculation entails the solution of a system of linear equations. The differential equation is nonlinear.

Despite the fact that we are seeking the steady-state solution of Eq. (1.1), the boundary condition for the left
boundary contains an unsteady term. However, having such a boundary condition means that a perturbation from the body
that reaches the inlet boundary will not be reflected back into the theoretical region. This in turn makes it possible to obtain
the steady-state solution more quickly.

Numerical calculations were performed on a rectangular grid consisting of 121 nodes in the x-direction and 81 nodes
in the r-direction. The grid was made denser near the forward and rear edges and sparser with approach of the external
boundaries of the theoretical region — 30 body-lengths distant in each direction. There were 81 nodes on the body, which
was positioned symmetrically relative to the x axis (|x] < 0.5).

The potential field from the near-range variant was usually used as the initial conditions. In this case, the new
solution was obtained after 120-150 iterations. To obtain the first variant, we assigned a zero initial potential field and
gradually increased the Mach number to a specific transonic value. In this case, the steady-state solution was obtained after
180-200 iterations.

To calculate drag by the method of integrating over shock waves, we developed an algorithm to locate the waves on
the basis of abrupt reductions in the local supersonic Mach number in the flow field. The algorithm was used to calculate the
steady wave drag of solids of revolution of simple form. Using the transonic rule of equivalence, we also used the algorithm
to calculate the wave drag of a schematized hypersonic aircraft of relatively complex configuration.

We will present the results of numerical calculations of the steady wave drag of three solids of revolution with a
relative thickness of 10%. The calculations were performed for the transonic range of Mach numbers M, from 0.9 to 1.07.
Each body consisted of three parts: the nose, which was close to an ellipsoid of revolution; the central part, of cylindrical
form; the spindle-shaped tail. The tail portion of all three bodies was the same and accounted for hailf their length. The nose
accounted for 20, 30, and 40% of the entire lengths of the first, second, and third bodies, respectively. The nose and central
part were smoothly joined, as were the central part and the tail, i.e., the derivative of the function R(x) was continuous at
their junctions. Flow about the given bodies was studied experimentally in [13], which described their geometries and
presented data on wave drag.

Figures 2-4 show the bodies and the dependences of wave drag on the Mach number: the solid curve shows the
numerical result, while the dashed line shows the experimental data [13]. The good agreement of the two sets of data is
evident. It should be noted that the numerical algorithm makes it possible to calculate not only subsonic regimes M,, < 1,
but also supersonic regimes with values of M, slightly greater than unity. Accordingly, bow waves or attached shocks form
ahead of the bodies, and the algorithm must include integration along these waves as well.
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The dot—dash curves in Figs. 2-4 show the result of calculation of drag by integrating the pressure distribution
obtained from numerical solution of the boundary-value problem formulated for Eq. (1.1). It is evident that these results
differ significantly from not only the experimental data, but also the results obtained by integration along the shocks; in
addition, they are physically incorrect within a fairly large range of values of M, . This result is consistent with the findings
in [2], where the author also obtained negative values of wave drag for airfoils in integrating numerical values of pressure
distribution over their contours.

The method developed here was used together with the transonic equivalence rule to calculate the wave drag of a
schematized hypersonic aircraft. In accordance with this rule, the wave drag of a prolate body of complex configuration
coincides in a first approximation with the drag of a body having the same distribution of cross-sectional area. Figure 5
shows the schematized aircraft and the corresponding equivalent solid of revolution, which has a tail section. Since flow
about the bottom part of the body cannot be studied by the methods of small perturbation theory, we examined the structure
as a semi-infinite body with a cylindrical sting of constant radius. The pressure acting on the bottom part was taken equal to
the static pressure in the incoming flow. Wind-tunnel test data obtained with different conditions for the bottom part (different
sting designs and dimensions, etc.) are usually referred to a standard bottom pressure by special methods, this pressure being
equal to the static pressure at the inlet to the working part of the tunnel.

In calculating the resistance of the equivalent solid of revolution, we considered that the radius of the body in the tail
section R # 0 at x = 0.5 and that the second term in Eq. (2.2) was nontrivial. However, our calculations showed that it is
two orders smaller than the first term.

Figure 5 shows the dependence of wave drag on the Mach number of the aircraft and the equivalent solid of
revolution. The dashed experimental curve was obtained at TsAGI (Central Aerohydrodynamic Institute) and corresponds to
the wave drag of the aircraft model calculated as the difference between the total drag for the specified Mach number and the
drag at M, = 0.7 for subcritical flow. The dashed curve corresponds to the drag calculated by the method of integration
over the body. It is apparent that the values of wave drag calculated by the method of integration over a shock wave (solid
curve) are considerably closer to the experimental data than the values obtained by integrating over the body. We should
point out that the aircraft model being discussed is fairly complex, including an engine nacelle and corresponding to a thick
equivalent solid of revolution (thickness 14%). This is probably the source of error in the theoretical curve. In particular, the
complexity of the model is probably responsible for the location of the drag maximum in the supersonic region.
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